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Abstract

Understanding images in terms of logical and hierarchical structures is crucial for many semantic tasks, including image retrieval,
scene understanding and robotic vision. This paper combines robust feature extraction, qualitative spatial relations, relational
instance-based learning and compositional hierarchies in one framework. For each layer in the hierarchy, qualitative spatial struc-
tures in images are detected, classified and then employed one layer up the hierarchy to obtain higher-level semantic structures. We
apply a four-layer hierarchy to street view images and subsequently detect corners, windows, doors, and individual houses.
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1. Introduction

Interpreting visual scenes is a hard task and the field of
computer vision has developed many techniques over the past
decades for segmentation, classification, recognition and re-
trieval of images, objects and scenes, e.g., [1, 2]. Many of
those techniques use a plethora of local low to medium-level
features such as geometric primitives, patches, point clouds and
invariant features [3]. However, for high-level tasks involving
complex objects and scenes such features are potentially not
enough. It is more intuitive to understand and describe images
in terms of hierarchical structural or graph-like representations,
which reflect their natural composition into objects, parts of
objects and lower-level substructures [4]. Man-made (vs. nat-
ural) scenes especially exhibit considerable structure that can
be captured using qualitative spatial relations. For example, a
typical house consists of aligned elements such as: a roof, some
windows, one or more doors and possibly a chimney. A hier-
archical aspect is that a window and a chimney themselves are
composed of particular configurations of local features (e.g.,
corners with a certain appearance arranged in a rectangular-like
way and ‘brick’-like patterns of a certain shape, respectively).

This view on image representation builds on very early ideas

that compositional hierarchies and relational constraints be-
tween image parts are key components of an image understand-
ing system [5, 6, 7, 8, 9, 10]. However, then, different from
today, low-and mid-level vision procedures were too immature
to support such ambitious representations and goals. In this pa-
per, we renew the idea that visual scenes are best described us-
ing high-level representational devices such as graphs, and even
more generally using logical languages [11]. The clear advan-
tage of these rich symbolic representations is that they can, for
example, abstract spatial relations between scene components
away from exact locations and generalize over similar situa-
tions, independent of the metric details. In this paper we de-
scribe a novel, model-free relational distance-based technique
for hierarchical image understanding. It considers the structural
aspect of a scene and employs recent relational learning devel-
opments. Instead of using a formal model of the distribution of
scenes (e.g., in the form of a full grammar), we start from a set
of annotated examples of objects in the scene. Yet, our frame-
work preserves some desired properties of grammars, that is, it
employs structured input features and outputs a structured ex-
planation of the image layer-wise in the hierarchy. The base
layer relies on local feature descriptors. A subsequent layer

Preprint submitted to Elsevier April 9, 2013



consists of objects and higher layers consist of configurations
of objects. Spatial logical representations are used to general-
ize over configurations with different number of components.
We explicitly focus on the recognition of known substructures
in street view images (i.e., windows, doors and houses), how-
ever, our approach can be used for other domains as well.

Our contribution is a new framework in which spatial con-
figurations and relational distance functions are used through-
out all layers of a hierarchy, in a unified way, to recognize
known objects. Many computer vision algorithms use prob-
abilistic classifiers, distance functions and kernels for object
detection. Yet, these techniques seem less well equipped for
detecting higher-level concepts that consist of qualitative spa-
tial configurations of objects. In these cases relational gen-
eralization techniques [11] are required. Thus far, most work
in computer vision has focused on fixed compositional struc-
tures [12] or constellation models [13]. The use of relational
knowledge, in general, and compositional systems together is
limited [14, 15, 16]. This paper is a contribution to this line
of research by showing how recent results in relational distance
metrics [17] can be used as a generalization technique to help
recognize higher-level structures in images.

We assume manually labeled examples of object categories
to be available throughout all layers in the hierarchy (i.e.,
houses, windows and doors). Each house is annotated with
the locations and shapes of its constituent windows and doors.
Thus, we do not assume that a full domain model, like a gram-
mar, is available. We only assume descriptions of images at
the different semantic layers of the hierarchy. Each example is
represented as a set of parts and a set of general qualitative spa-
tial relations that hold among them (hence; a relational attribute
graph). Each image substructure is spatially embedded in a 2D
plane, and parts are related to each other with respect to this
space. A strong point of our framework is that distance func-
tions at each layer of the hierarchy, either in terms of low-level
features or high-level relational spatial composites, can easily
be replaced by alternatives. This paper extends our previous
work by evaluating the proposed framework on an augmented
dataset of 164 street view images.

2. Related Work

Several papers have applied computer vision techniques to
house facades. In [18, 19] structure models of meaningful fa-
cade concepts are learned from examples. In [20] the authors
tackle the house delineation problem by generating vertical sep-
arating lines on the facade and using a dissimilarity measure be-
tween these features. Finally [21, 22] assume having the struc-
ture of a building facade and then estimate the parameters of
the model. Different from these, our work uses distances be-
tween logical interpretations to detect known structures in an
instance-based fashion.

In other domains, e.g., document analysis, distance-based
techniques have been used in a relational setting [23], yet they
do not address the intrinsically noisy nature of vision-based
interpretation of images of houses. In fact, most papers that

Figure 1: A typical hierarchy with k + 1 layers. A layer i is a set
of classified entities (circles) arranged in spatial configurations. Each
configuration generates a classified entity at the next higher-level i+1
in the hierarchy.

do address such problems perform interpretation through com-
plete image grammars [16, 18, 24, 25, 26]. These have been
well-studied in the literature [25], but need considerably more
bias (or learning procedures) to supply (or learn) the grammar
rules. This in contrast to our model-free approach, which is
based on a comparison to annotated examples. The use of rich
logical formalisms in the state-of-the-art in computer vision is
limited [27].

Closely related are graph matching and graph kernel-based
techniques for image understanding [28, 29]. However, dif-
ferent from these, our framework builds on recent general re-
sults on distance metrics for logical interpretations [17]. In this
sense, we pursue a current interest in using relational learning
techniques for complex vision tasks [30]. Other relevant work
includes approaches based on relational object models [31] or
probabilistic relational learning [32].

Hierarchical representations for image understanding have
been exploited in both older and more recent works [14, 15, 33].
A clear advantage is the use of different levels which reduce the
semantic gap between concepts to be detected (e.g. corners and
houses in the house facade domain). Our work builds on this
idea, however, it is novel in that it also employs relational rep-
resentations at each layer.

3. The Hierarchical Framework

In our hierarchical framework an image Z is described at sev-
eral layers 0, . . . ,k in the hierarchy, with 0 the base layer and k
the top layer (Figure 1). At each layer, the description consists
of a set of classified regions of interest or parts Ci as well as
the spatial relationships among them. The classes denote the
concepts the parts belong to. The task then is to use the de-
scription of an image at layer i to obtain and classify the parts
Ci+1 at the next higher layer i+1 in the hierarchy. We call this
the semantic segmentation task. Images annotated at all layers
are available as training data.

In our case, the base layer consists of the image itself, with
the pixels as parts. In the primitive layer the parts are local
patterns, e.g., a corner. The object layer is then built from spa-
tial configurations of such local patterns, forming regions of
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interest belonging to concepts such as door and window. These
are then used at the next layer, i.e., the house layer, to find
higher-level parts representing houses. We stop at the scene
layer which groups houses into streets. Each layer consists of
parts and the classes they belong to, and it is formed by making
use of spatial configurations of parts from the previous lower-
level layer. This hierarchical image understanding framework
propagates the detected parts in a bottom up manner through
each layer. Information flow is similar at all layers; first, the
parts Ci�1 of the previous layer are detected, then current-layer
parts are generated using configurations of Ci�1 and finally the
best ones Ci are further employed at the next layer.

4. Layer-wise Representation and Function

We describe in more detail how an image Z is represented
at one layer in the hierarchy. We assume knowledge about
the layer identity and access to automatically detected and ex-
tracted regions of interest in the image at this layer, together
with their descriptions. Based on these assumptions we define a
language consisting of visual entities, spatial relations between
visual entities, composite entities and membership relations be-
tween a visual entity and a composite entity. The language can
differ from one layer to another, depending on the properties of
the parts at each layer.

A visual entity vent(id,attr1, . . .) represents a part or entity
in the image at the current layer i, e.g., a corner or a window
with id as its unique object identifier. Attributes of a visual en-
tity are its position, i.e., the coordinates of its bounding box,
and its class label. Spatial relations impose a structure on vi-
sual entities (e.g. spatial neighborhood) and are defined using a
logical background theory (a set of Prolog rules as in relational
learning [11]). As an example consider the spatial relation
cRight(id1, id2,dist) (close aligned horizontally to the right)
with an attribute for the Euclidean distance dist between visual
entities id1 and id2. A composite entity cent(ic,attr1, . . .) is a
candidate visual entity with identifier ic at layer i+1; it repre-
sents a set of visual entities at layer i and the relations that hold
among them; thus it implicitly groups a set of visual entities into
a composite entity using membership relations partof(id, ic).
All visual entities, composite entities, spatial and membership
relations for image Z at one layer are denoted VZ , CZ , SZ and
MZ , respectively. We define a visual interpretation IZ of image
Z as their union.

For any composite entity c we denote Vc as the set of visual
entities grouped by c, Sc as the set of spatial relations represent-
ing the projection of SZ on Vc and Mc as the set of membership
relationships between the elements of Vc and c itself. We fur-
ther denote Ic as the subset of IZ that contains Vc, Sc, Mc and
c itself. Finally, V Sc consists of Vc and Sc. An example of a
visual interpretation at the house layer is given in Figure 2(b).
Some elements of CZ capture the inherent structure of the con-
cept house; the rest belongs to the class none. It is convenient
to visualize interpretations as graphs in which the entities cor-
respond to vertices and the relations to directed labeled edges.
A composite entity then represents the subgraph V Sc.

(a) An image Z (left) and its graphical representation (right). Each visual en-
tity corresponds to a detected door/window (black circle) with its spatial lo-
cation li (white rectangle). Each composite entity (white circle) is a possible
house defined by a subgroup of visual entities. The spatial and membership
relations are marked by the continuous and interrupted lines, respectively.

IZ = {vent(id1, l1,win),vent(id2, l2,win),vent(id3, l3,door),
vent(id4, l4,win),vent(id5, l5,win),vent(id6, l6,win),
vent(id7, l7,door),vent(id8, l8,win),cRight(id1, id2,d1),

cAbove(id2, id3,d2),cRight(id3, id4,d3),cRight(id4, id5,d4), . . . ,

cent(ic1, l9,house),cent(ic2, l10,none),cent(ic3, l11,house),
partOf(id1, ic1),partOf(id2, ic1),partOf(id2, ic2),

partOf(id5, ic2), . . .}.

(b) Visual interpretation at the house layer for Z. Spatial relations are
cRight (close to the right) and cAbove (close above).

Figure 2: Image representation at one layer.

Our goal is to recognize visual structures in a new image at
each layer. We approach it in three steps. The first step is the
generation of a set of composite entities C, from which only
relevant ones become visual entities at the next layer. The gen-
eration of meaningful new entities is a novel task in the rela-
tional learning context. It can be seen as a dual to predicate
invention [34]. There the goal is to determine new and useful
predicates. Here the task is to invent new entities.

The second step is classification. For each of the candidate
composite entities in C, we need to determine the concept they
belong to (if any). This can be cast into a concept-learning prob-
lem. For each target class (such as house, window and door)
we have examples in our training set. Consider, for instance,
the concept of a house. In Figure 2(a) the composite entity ic1
forms a positive example, while ic2 is a negative example. For
each composite entity c in the training set that forms a positive
example of a concept, we use the visual interpretation V Sc as
prototype. Such a prototype is shown as a graph in Figure 4
on the left, where it is matched with a part of an image inter-
pretation. Its corresponding visual interpretation is presented
in Figure 3. The composite entity classification task is solved
using an instance-based learning approach. We use a relational
distance measure to find the relevant matches of candidate com-
posite entities with prototypes.

Each composite entity in C is classified in a local manner, by
taking into account the entity to be classified and the set of pro-
totypes, but no context. This may give unintuitive results at the
global level. For instance, it could be that two entities with sig-
nificant overlap are both classified as houses. Thus, we perform
a third selection step in which contextual constraints are con-
sidered. Using global optimization we find the best subset of
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V Sc = {cent(ic1, l9,house),
vent(id1, l1,win),vent(id2, l2,door),
vent(id3, l3,win),vent(id4, l4,win),
vent(id6, l6,win),cRight(id1, id2,d1),
cAbove(id2, id3,d2),cRight(id3, id4,d3),
cAbove(id2, id4,d4),cRight(id6, id3,d5),
cAbove(id1, id6,d6),partOf(id1, ic1),

partOf(id2, ic1),partOf(id3, ic1),

partOf(id4, ic1),partOf(id6, ic1)}.

Figure 3: An example of an instance in the house facade domain at the
house layer. The target attribute is the class of the composite entity,
i.e., house in this case.

classified entities C, from which we then derive our detections.

5. Layer-wise Semantic Segmentation

Given an image Z, we want to obtain a semantic segmenta-
tion at one layer by trying to best embed prototypes in Z. To
this end, we first generate composite entities, we then classify
them and we select the best ones to obtain class detections (see
Algorithm 1).

I Composite Entity Generation (GENERATE). We generate
the set of composite entities C for an image Z using a language
bias, common in relational learning. As the number of all com-
posite entities CZ is exponentially large in the size of VZ , we
impose an upper bound on the number of composite entities
considered. The bound, calculated image-wise, is exponentially
proportional to the size of VZ , such that |CZ | = |VZ |a. The pa-
rameter a is constant and is established experimentally on the
training data. Each composite entity maps a local configura-
tion of visual entities, induced by the close relation, which
is thresholded on the image characteristics. To each of these
subgraphs a composite entity c is created and connected to all
its visual entities using membership relations. The result is the
subset C of candidate composite entities.

The candidate generation is done recursively for every image.
It starts with a less strict threshold on the close relation and it
automatically decreases this threshold at each iteration until the
constraint on the upper bound of the size of C is met. To find the
best semantic segmentation in case of noisy information, com-
posite entities representing different numbers of visual entities
are needed. For example, if the image contains some parts of a
(hypothetical) house, they can be regarded as configurations on
their own (e.g. the partial house ic3 in Figure 2(a)). The min-
imum and the maximum number of visual entities represented
by composite entities are given by the prototypes sizes. The up-
per bound is given for the set of all candidate composite entities
having different sizes.

An example of a composite entity rule at the object layer,
grouping three visual entities into potential windows/doors, is
described in Example 1. Rules grouping more visual entities
are defined in a similar way. At the house layer, the composite
entities are similarly generated, without the contour segment
constraints.

Example 1. A composite entity rule grouping three visual entities
that satisfy a square-like spatial constraint is defined as:
cent(Id,BB)  sprl(A,B),sprl(B,C),edge(Eab,A),

edge(Eab,B),edge(Ebc,B),edge(Ebc,C),getid([A,B,C], Id),
getProp([A,B,C],BB,Ar),minar < Ar < maxar.

where sprl/2 returns a pair of visual entities that satisfy any spa-
tial relation considered; edge/2 holds if there is a detected contour
segment in the raw image attached to a visual entity and thus, two
visual entities may be part of a composite entity if they are approxi-
matively linked by the same contour segment; getid/2 associates a
unique identifier to the newly generated candidate; getProp calcu-
lates properties of the composite entity, i.e., its bounding box (or loca-
tion) and aspect ratio, given the set of visual entities. The aspect ratio
of the candidate is checked to avoid unlikely long or tall candidates.

II Composite Entity Classification (CLASSIFY). At all lay-
ers, except the primitive one, a k-nearest-neighbor approach
based on a distance measure between two composite entities
is used for composite entity classification. Each composite en-
tity is represented by its corresponding visual interpretation I.
A matching between any two interpretations I1 and I2, is a map-
ping such that each entity in I1 is mapped to at most one entity
in I2. In terms of the graph representation, this corresponds
to mapping the vertices from I1 to those of I2, as indicated in
Figure 4. We define a distance function d(I1, I2) that measures
the quality of the mapping with two components. One charac-
terizes the structure similarity, the other the appearance. Our
choice is justified by the fact that both aspects may have impact
on the matching score.
II-A Classification: Structure. To evaluate how well two
logical interpretations match structurally, we must calculate
their generalization (common part). We employ a recent re-
sult of [17] on metrics. It targets the minimally general gener-
alizations of two interpretations, but applies to different types
of objects, including graphs. We choose the object identity
(OI)-subsumption order [35], which, for graphs, corresponds to
subgraph isomorphism. The minimally general generalization
(mgg) then is the maximal common subgraph. This means that
vertices in the subgraph can be mapped to at most one vertex in
the supergraph, imposing an exact structure matching, and thus
the mgg is not necessarily unique [11]. Example 2 illustrates
the mgg under OI-subsumption.

Example 2. Let I1 = {cRight(o1,o2,2)} and I2 =

{cRight(o3,o4,2),cRight(o5,o4,2)}.
The mggs are:
mgg1

OI(I1, I2) = {cRight(X1,X2,2)} with substitutions
q1

1 = {X1/o1,X2/o2}, q1
2 = {X1/o3,X2/o4} and

mgg2
OI(I1, I2) = {cRight(X1,X2,2)} with substitutions

q2
1 = {X1/o1,X2/o2}, q2

2 = {X1/o5,X2/o4}.

Consequently, the mgg for two interpretations I1 and I2 results
in a set mggall = {mgg(I1, I2)}. Using one mgg from the set,
the distance between two interpretations I1 and I2 is equivalent
to:

ds = |I1|+ |I2|�2|mgg(I1, I2)|,
where | · | is the number of the vertices in the interpretation.
From this, it is straightforward to derive a normalized struc-
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Figure 4: Graph representations of a prototype (left) and an image
interpretation (right).

tural distance dns(I1, I2). Similar distance measures are defined
in [36, 37, 38].
II-B Classification: Appearance. In addition to structural
similarities, properties of entities (e.g., color) are important. If
mgg represents the maximal common structure between two in-
terpretations I1 and I2, then mggq1 and mggq2 are specialized
maximal common parts of mgg that correspond to I1 and I2,
respectively. The substitutions q1 and q2 specify the mapping
between different entities. Indeed, if V/e1 2 q1 and V/e2 2 q2
then e1 is mapped onto e2. We can now define a normalized
appearance distance between the two interpretations I1 and I2
as:

dna(I1, I2) =
1

|mgg| ⇥ Â
a2mgg

d0(aq1,aq2),

where a is an atom in mgg. Since mgg gives the common struc-
ture of the two interpretations, in order to compute dna(I1, I2)
we start from mgg and specialize each atom a 2 mgg, such that
aq1 and aq2 are ground atoms with the same predicate sym-
bol a. Let S denote the set of all symbols, then the distance
d0 : S⇥S! [0,1] is a normalized distance measure defined for
our particular application in the following way. Let ti,si be at-
tributes, then:

d0(a(t1, ...tn),a(s1, ...,sn)) =
1
n
⇥

n

Â
i=1

d0(ti,si),

For discrete attributes we employ the hamming distance
d0(t1, t2) = 1 if t1 = t2, otherwise 0. For numerical attributes
in the range [min,max]:

d0(t1, t2) =
abs(t1� t2)
max�min

,

The structural and appearance-based aspects of the distance
measure are combined into a global measure using a (normal-
ized) weighted average:

d(I1, I2) = min
m2mggall

(ws⇥dns(I1, I2)+wa⇥dna(I1, I2)),

where ws +wa = 1. These weights can be supplied or learned.
Because the mgg of interpretations I1 and I2 is not unique, a
minimum over mggall is required.

We employ a k-nearest neighbor classifier (KNN). Given the
set of composite entities C and the set of prototypes z, the al-
gorithm evaluates the quality of each composite entity by com-
puting the distance to the prototypes and classifies it based on
the majority vote of its neighbors. The algorithm returns the set
Cev of triplets (y,dz,c), where y is the class of c 2 C and dz is
the mean distance from c to the elements of the subset zy ✓ z
describing only concepts of class y.

III Composite Entity Selection (SELECT). In the selection
step we first rank the set of composite entities of interest C ac-
cording to their distances to the nearest prototypes in z. Then
we filter them to obtain a reduced set C⇤ of C by imposing a
threshold Th on the number of candidates. This is optional,
but recommended as a large space of composite entities C can
be generated. From this reduced set, we then select those that
together explain best (most of) the visual features at that layer.

To this end, we formulate the composite entity selec-
tion problem as a maximum weighted independence set prob-
lem(WISP). Let G=(V,E,W ) be an undirected graph, where V ,
E and W are the set of vertices and edges and a vertex weight-
ing function, respectively. An independent set is a set S ✓ V
such that 8e 2 E the two end vertices of e do not belong to S
simultaneously. Then WISP is then formulated as: given an
input graph G = (V,E,W ), find the independence set S of ver-
tices in V such that the value W (S) is maximal. To formalize
our problem as a WISP, we do the following mapping:

• V becomes the set of composite entities C⇤;

• E = {e(c1,c2)|c1,c2 2C⇤,V (c1)\V (c2) ,?} is the set of
constraints between composite entities. An edge is added
between two vertices if they share at least one visual entity.
Thus, the solution must contain only composite entities
that do not share any visual entities;

• W : V ! N is Wc = s(1� dz(c,z)),8c 2 C⇤, where s is
a function which proportionally amplifies higher scores to
ensure the selection of best scored composite entities. The
function that we want to maximize by finding S is then
W (S) = Âc2S Wc.

The solution to the WISP problem is given by the function
OPTIMIZE. This is an NP-hard optimization problem since our
selection problem deals with general graphs. Both exact and
approximation algorithms exist [39]. If the size of C⇤ is lower
than 150 vertices we employ the exact Cliquer optimizer1. It is
designed for the maximum clique problem, but it is equivalent
to the WISP computed on the complement graph [40]. Oth-
erwise, we use the approximate QUALEX-MS optimizer2 [39].
Other approximation methods are also known to work in poly-
nomial time [41]. However these are adequate for particular
(i.e., planar) graphs, while our selection problem deals with
general graphs.

1http://users.tkk.fi/pat/cliquer.html.
2http://www.stasbusygin.org.
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Algorithm 1 Segments Z (visual entities V , prototypes z)

function SEMANTICSEGMENTATION(V ,z)
C GENERATE (V )
Cev CLASSIFY(C,z)
Detections SELECT(Cev)
return Detections

end function

function CLASSIFY(C,z)
return for each c 2 C a triple hy,d,ci where y,d are the

class, respectively distance w.r.t. the prototypes in z accord-
ing to a k-NN classifier.
end function

function SELECT(Cev)
RANK candidates (y,d,c) 2Cev w.r.t. d
FILTER candidates C⇤ = {(y,d,c) 2Cev|#C⇤  Th}
{(S,Qual)} OPTIMIZE(C⇤)
S⇤ = argmax

Qual
{(S,Qual)}

Detections PREDICT a bounding box for each c 2 S⇤

return Detections⇤  apply NMS on Detections
end function

The end goal of our framework is to predict bounding boxes
of detected objects. We use the subgraph V Sc of the compos-
ite entity and map the bounding boxes of the visual entities Vc
(i.e., vectors of 2D locations) to the bounding box corners of
the object c. Also, the KNN classifier or the selection step may
give multiple spatially overlapping detections for each instance
of an object. Solving the WISP ensures that detections do not
share any visual entities, however their bounding boxes can still
overlap. After applying the bounding box prediction, we use a
greedy procedure on the score to eliminate repeated detections
via non-maximum suppression (NMS), similar to [12].

The algorithm follows the same principle for all layers of the
hierarchy. However there are differences at each layer with re-
spect to i) the interpretations generated (both size and structure)
and ii) the distance function which is tuned for each layer.

6. Application and Experimental Evaluation

Dataset of 164 street view images We apply our method to
2D street view images of rows of houses (Figure 5). They com-
monly display a rich structure (and variety), yet are often quite
consistent in terms of structure in a row of houses. We have
annotated3 164 images of rows of house facades from different
countries. A number of 20 images were collected by ourselves,
the rest from Google Street View. All images show near-frontal
views of the houses and no further rectification was performed.
Each image has a resolution of 600x800 pixels. On these im-
ages, windows, doors and houses were manually annotated. We
use the close to the right (cRight), close above (cAbove) and

3Using the LABELME toolbox [42].

Figure 5: Images of houses in Eindhoven; an annotated training image
is on the left; a testing image is on the right.

touch to the right (tRight) spatial relations as illustrated in Ex-
ample 3. An Euclidian distance threshold is used for the close
relation defined relatively to the size of the objects. The back-
ground knowledge can easily be extended with new relations,
to enable even richer relational representations of visual data.

Example 3. The background knowledge for spatial relation cRight:
closeto(A,B,Dist)  bbox(A,BB1), bbox(B,BB2), A , B,

distance(BB1,BB2,Dist), Dist < threshold.
cRight(A,B,Dist)  bbox(A,BB1), bbox(B,BB2),

right(BB1,BB2),closeto(A,B,Dist).
where bbox is the bounding box of a visual entity.

We make use of three layers in a four-layer hierarchy: prim-
itive, object and house layers (Figure 6).

The primitive layer takes as input image pixels and groups
them in corner-like features with local descriptors. We employ
the KAS feature detector [43] to detect interest points formed
by chains of 2 connected, roughly straight contour segments.
The detector was run on the images at half their original size.
We solve the classification problem by attaching a class la-
bel from the set Y = {cType00,cType01,cType10,cType11}
to each corner-like candidate. These labels represent top-right,
top-left, bottom-right and bottom-left corners and are estab-
lished based on the orientation of the segments composing the
2AS feature. The selection is done in two steps. Firstly, we
only keep square-like corners with an angle (90� d)� < a <
(90+ d)�. Secondly, we describe the corners with HOG de-
scriptors [44] and train a binary classifier on these descriptors to
discard irrelevant corners found on other structures than build-
ings (e.g., vegetation or cars). We use object layer annotations
of windows and doors for training.

At the object layer visual entities are sparse, previously de-
tected, corners. Each corner has a local HOG descriptor as an
attribute. We employ a variation of the original HOG descrip-
tor, with 16 orientation bins, window size of 128x128 pixels
and a block size of 8x8 cells. Additionally, we use the squared
root of the histogram, which showed improved results [45]. In-
stead of the raw descriptor we train a classifier to map each
vector to a discrete attribute, either a window or a door label.
Another attribute is the corner type (e.g., cType00). Based on
our spatial theory, attributes representing the Euclidean distance
between bounding boxes of spatially related visual entities, also
contribute to the appearance-based distance. Composite entities
represent possible doors or windows and are defined by sub-
graphs consisting of 3 up to 4 visual entities.
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At the house layer visual entities are doors and windows
found at the object layer, and composite entities represent possi-
ble houses. Again we employ our spatial theory to find potential
composite entities, and derive attributes for the spatial relations
between visual entities. Attributes of visual entities at this layer
are the labels door and window. Composite entities are defined
by subgraphs consisting of 2 up to 6 visual entities, estimated
from the training data.
Experimental Evaluation Experiments were done in two
phases. First, we performed experiments at single layers in-
dependently. More precisely, we used as input for the learning
task at one single layer the annotated (for the house layer) or
segmented (for the object layer), training data at that layer and
then employed our method to compute the output. In this way,
it is possible to get an appreciation of how difficult the learn-
ing problem is and what are the limitations of the data at each
layer. Second, we performed experiments in the full hierarchi-
cal setting, that is, the inputs are image pixels and the outputs
are at the house layer. This allows us to estimate how good the
hierarchical approach works.

Because we have a detection problem we measure perfor-
mance in terms of the number of true and false detections in
the test set. In our setting positive predictions are all compos-
ite entities returned by the selection function. We evaluate the
performance using the PASCAL VOC criterion [46]. It com-
pares the detected bounding box BBd to the ground-truth BBt .
If area(BBd \BBt)/area(BBd [BBt) > 0.5, then BBd is a true
positive (TP), otherwise it is a false positive (FP). Precision P is
TP divided by the number of positive predictions, while recall
R is TP divided by the number of ground-truths. The F1 score
is a measure of accuracy and is the harmonic mean of precision
and recall: F1 = 2PR/(P+R).

The problem of detection is often posed as a classification
task, namely distinguishing in the image the class of interest
with some score. Such a classifier can be turned into a detec-
tor by sliding it across the image and thresholding the scores
to obtain a precision-recall curve. Differently, our formulation
builds on top of a kNN classifier by selecting interesting (al-
ready scored) candidates which together find the best semantic
segmentation of the image. Since they are together part of the
solution, they are all predicted positive instances (except the
spatially overlapping ones solved by the final NMS step). As a
result, there is no obvious threshold that can be varied to trade-
off precision vs. recall and instead of a precision-recall curve,
the performance is measured as a precision-recall point. Since
we are interested in measuring the impact of structure on our
detection problem, we vary the parameter ws of our model and
show its influence on precision and recall values.

We have as parameters k (in the KNN) and the relative
weights ws and wa (structure vs. appearance for classification).
We experiment with different values of k to evaluate the influ-
ence of the structure parameter ws on precision/recall values4.
Results at single layer – houses At the house layer, we first
test our approach directly on the ground-truth annotations, that

4We choose ws as the free parameter; wa = 1�ws.

Figure 6: Data flow in the four-layer hierarchy of the facades domain.
Input layers: pixels, corner primitives and object entities. Correspond-
ing output layers: corner primitives, object entities and house entities,
respectively.

Figure 7: The influence of structure on R/P for different k.

is, on manually annotated objects such as windows and doors.
We vary ws from 0 to 1 as in Figure 7. We stress that ws is
not a threshold to trade precision for recall, but we use it to
show the influence of using structure on the performance. We
observe that if k is large enough (k � 200), more structure in-
creases precision/recall values. We notice that the approach is
not very sensitive to a precise value of ws when ws > 0.2. For
k = 300 we obtain optimal values R=0.83, P=0.8 and F1=0.81
when ws = 0.4. We observe that the appearance component
wa = 0.6 has also an influence in obtaining optimal values of
precision and recall. We also note that, due to the selection pro-
cedure, precision and recall are highly coupled. For small val-
ues of k recall and precision are much lower for any ws. That is
explained by the fact that, given the structural variability at the
house layer, a comparison with enough prototypes is needed.
Results at single layer – objects At the object layer the ex-
periments are performed with available detected 2AS from the
primitive layer (not annotations). They show that the variation
of the structure still has an influence, though it is more lim-
ited. This can be explained by the fact that windows and doors
have mostly the same structure. However, at the object layer
the structure still has an indirect influence, as it is needed for
computing appearance-based aspects. We ran experiments with
different values for k and ws. The results are shown in Figures 8
and 9 for classes door and window, respectively. The maximal
values R=0.43, P=0.41 and F1=0.42 for class door and R=0.52,

7



P=0.43 and and F1=0.47 for class window are obtained for pa-
rameters k = 75, ws = 0.4, wa = 0.6, and k = 150, ws = 0.2,
wa = 0.8, respectively. However, results for other k values are
close. At this layer, we do not evaluate against the entire set
of training instances, but a sample of these (33%) according to
the distribution of classes. A NMS step with 50% overlap was
applied after the selection step.

Figure 8: The influence of structure on R/P for different k.

Figure 9: The influence of structure on R/P for different k.

Results at single layer – corners To asses the category accu-
racy of the parts that the object layer builds on, we also report
results at the primitive layer. For the first classification step, es-
tablishing whether a corner is relevant or not, we obtain R=0.92,
P= 0.85 and F1=0.88. The second classifier, distinguishing be-
tween window and door corners, gives as results R=0.74, P=
0.82 and F1=0.78.
Results with hierarchy – houses We evaluate detection re-
sults at the house layer using the full hierarchy. From the raw
image we first detect the 2AS primitives. These are then em-
ployed further as input to detect windows and doors. At this
point there are 2 possible ways to proceed. One option is to use
as input for the house layer the windows and doors obtained af-
ter the selection step at the object layer. However, this gives less
good results as a high enough recall is required from the object
layer to obtain rich enough visual interpretations. Alternatively,
instead of the full selection step, we consider the ranked com-
posite entities on which we directly apply NMS. In this way, the
full selection is replaced by a less selective mechanism, which
keeps the top ranked candidates and improves the recall at the
object layer (even with a NMS overlap of 0%). The selected
candidates become visual entities at the house layer. This im-

proves the results, as shown in Figure 10, to obtain for 0% NMS
overlap, k = 300 and ws = 0.3, R=0.53 and P=0.61.

Figure 10: The influence of structure on R/P for different k.

One interesting aspect is how the number of top ranked can-
didates allowed at the next layer can influence the performance
of the hierarchy in terms of recall/precision. We make this
analysis by varying the degree of the NMS overlap across the
dataset. The higher the overlap, the larger the number of candi-
dates propagated at the house layer, image-wise. Table 1 shows
this analysis. An interesting research question is how to com-
putationally deal with this trade-off, because when the number
of candidates propagated from one layer is too high, this will
give computational difficulties at the next layer.

Propagated candidates
(NMS overlap degree)

R P F1

0% 0.53 0.61 0.57
2% 0.57 0.65 0.61

Table 1: The influence of the number of candidates propagated at the
next layer on hierarchy results.

In all experiments we perform a 5-fold cross-validation on
the dataset with fixed folds. In practice, we set Th = 300 can-
didates for the single layer experiments. We are able to de-
lineate houses and to separate them from neighboring houses,
even when attached. Some qualitative results are presented in
Figure 11 – 13. The higher we get in the hierarchy and therefore
richer in the semantics, the more relevant the structural aspect
becomes.
Comparison to other approaches/baselines The goal of this
work is not to compete with powerful detectors, often build-
ing on dense feature representations, but rather to evaluate how
structure can be flexibly exploited in detection problems in gen-
eral. We show that even when starting from relatively sparse
cues (Figure 6, primitive layer), detection and delineation of
complex objects is feasible, thanks to the use of structure.
Moreover, rather than just detecting bounding boxes of objects,
our method can return a semantic hierarchical interpretation of
the scene, decomposing each object into its constituents parts.
For reference, we compare our method with several approaches
to assess the difficulty of the problem.

As a first baseline, we use the generic object detector (Ob-
jectness) proposed in [47] and the objectness measure to quan-
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tify how likely it is for an image window to contain a house5.
We run the detector with 100 window samples. As a second
baseline we combine the objectness measure with a separate
classifier trained6 for the class house on HOG feature descrip-
tors [44] (Obj+HOG). The objectness classifier is used as a
prior distribution to sample relevant hypotheses in the image,
while the HOG classifier is used to re-score them. We first
sample 100 house candidates in each image and then employ
the specialized classifier to improve the predictions.

We additionally compare to two well known approaches in
computer vision. One is the boosting approach7 [48] which
trains an ensemble of weak detectors for the class house. Each
weak detector uses template matching with a localized patch
in object centered coordinates. Individual houses can be more
effectively detected using a template matching approach than
a texture-based one, since houses in the same row have the
same texture and most street scenes greatly vary in texture
across the dataset. We use different numbers of weak classi-
fiers (Boosting30–120) as shown in Table 2.

The second approach is the deformable part-based models
(DPM) [12], a system that can represent highly variable objects
using mixtures of multiscale deformable part models. Each
model is a hierarchical star-structured model defined by a root
filter (first layer) plus a set of parts filters with spring-like con-
nections between the root and the parts (second layer). The
score of a star models at a particular position and scale within an
image is the score of the root filter at the given location plus the
sum over parts of the maximum, over placements of that part,
of the part filter score on its location minus a deformation cost
measuring the deviation of the part from its ideal location rela-
tive to the root. To discriminatively train this model using ob-
ject bounding boxes, a latent SVM is used. Results are reported
for the standard DPM setting with one component (belonging
to the front pose of the house) containing 8 parts. We use as
positive examples the house bounding boxes and, although our
approach does not use explicit negative examples, we provide
as weak” negatives background samples of fixed size from the
annotated bounding box surroundings.

Table 2 shows comparison results. The F1 values in the table
are the maximum F1 scores over all precision-recall points in
the obtained PR curves. Although the baseline detectors and
the boosting approach perform reasonably well for the house
detection problem, none of these detectors incorporates a fine-
grained decomposition of a house, in the form of structured
output which explains the image in the same way as our frame-
work. DPM is an exception, as the trained model can be visu-
alized in terms of its parts and displacements to the root. Still,
these parts do not have an explicit meaning. Our results are
comparable to DPM, however we start from sparse features and
thus,less rich appearance cues. We only use as features the cor-

5We use Version 1.5, available at http://www.vision.ee.ethz.ch/

˜calvin/software.html.
6Using the LIBSVM library available at: http://www.csie.ntu.edu.

tw/˜cjlin/libsvm/.
7Available at http://people.csail.mit.edu/torralba/

shortCourseRLOC/boosting/boosting.html.

Figure 11: Segmentation of images with partial occlusions on annota-
tions at the house layer.

Figure 12: Segmentation of images with partial occlusions at the house
layer using the hierarchy.

Figure 13: Segmentation of images at the object layer. Door detections
are marked in green.

ners estimated from 2AS and HOG descriptors on their (re-
duced) neighborhood. Still, our result has room for improve-
ment. One straightforward way is to apply the KAS feature
detector on the original image size to increase the recall mea-
sure. Our method outperforms the baselines and the boosting
approach.

Method R P F1
Objectness 0.21 0.08 0.12
Obj+HOG 0.35 0.10 0.16
Boosting30 0.53 0.55 0.51
Boosting60 0.52 0.51 0.53
Boosting120 0.51 0.54 0.49
DPM 0.62 0.61 0.62
Hierarchy (house) 0.57 0.65 0.61

Table 2: Comparison to baselines for class house.

Results on 60 images with hierarchy – houses In previous
work [49], we performed the same experiments on a subset of
60 images of the dataset considered in this paper. For com-
parison, the results are summarized in Table 3. We emphasize
that similar results are obtained in both settings for similar val-
ues of the parameters ws/wa. This shows that the importance
of structure is roughly the same even when larger datasets are
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considered. Our method generalizes well across larger datasets
of house facades, independently of the appearance variability.

Setting ws R P F1
Single layer (house) 0.4 0.92 0.90 0.91
Single layer (door) 0.3 0.42 0.47 0.44
Single layer (window) 0.5 0.61 0.35 0.45
Hierarchy (house) 0.4 0.61 0.65 0.63

Table 3: Summary of results on a subset of 60 images of the 164 dataset
considered in this paper.

To summarize, we have shown that our framework gives
promising results for the detection tasks at each individual layer
and using the full hierarchy. A challenging aspect is the prop-
agation of candidates up through the hierarchy. The recall ob-
tained at one layer directly influences the performance at the
next layer. If the number of allowed candidates is high enough
which means that we do not just propagate the single best solu-
tion, but a larger number of candidate solutions we enable the
higher layer to select from more candidates and achieve bet-
ter performance. This balance between generating many candi-
dates and propagating a suitable number of relevant candidates
is an empirical question.

7. Conclusions

We have presented a novel general framework for hierarchi-
cal image understanding, incorporating distance-based classi-
fications, relational, spatial knowledge representation and ro-
bust visual feature recognition. The experiments show i) the
interplay between structural and appearance-based aspects in
the recognition task and ii) good detection results both at sin-
gle layers and full hierarchy. This work explores a new rela-
tional scheme for solving computer vision tasks and we believe
that there is still room for improvement. Three strong points
of the approach are that i) we do not assume availability of a
full model of the domain (e.g., a grammar) but only a set of
annotated examples, which is more natural and easier to ob-
tain, ii) the framework can easily be extended by adding re-
lational/spatial background knowledge, or replacing the clas-
sifiers by other similarity functions or kernels and iii) the ap-
proach incorporates a fine-grained decomposition of a house in
the form of structured output which explains the image, as op-
posed to existing detectors.
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